Edit this page on our live server and create a PR by running command !create-pr in the console panel

Working with JavaScript and TypeScript

  • Difficulty level: easy
  • Time need to lean: 10 minutes or less
    • SoS replies on JSON format to convert between complex data types to and from JavaScript

JavaScript

SoS exchange data with a JavaScript kernel using JSON format. It passes all JSON serializable datatypes using the json module, and convert numpy arrays to list before translation (array.tolist()), and use DataFrame.to_jason to translate Pandas DataFrame to a list of records in JS.

Python condition JavaScript
None null
boolean, int, str, etc corresponding JS type
numpy.ndarray array
numpy.matrix nested array
pandas.DataFrame table with scheme and array of records (dictionary)

Translation from JavaScript to Python is easier because Python supports all JSON serializable JS datatypes.

The DataFrame translation is particularly interesting because it allows you to pass complex datatypes in Python and R for visualization. For example, for the following data.frame in R,

In [25]:
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX421.0 6 160.0110 3.90 2.62016.460 1 4 4
Mazda RX4 Wag21.0 6 160.0110 3.90 2.87517.020 1 4 4
Datsun 71022.8 4 108.0 93 3.85 2.32018.611 1 4 1
Hornet 4 Drive21.4 6 258.0110 3.08 3.21519.441 0 3 1
Hornet Sportabout18.7 8 360.0175 3.15 3.44017.020 0 3 2
Valiant18.1 6 225.0105 2.76 3.46020.221 0 3 1
Duster 36014.3 8 360.0245 3.21 3.57015.840 0 3 4
Merc 240D24.4 4 146.7 62 3.69 3.19020.001 0 4 2
Merc 23022.8 4 140.8 95 3.92 3.15022.901 0 4 2
Merc 28019.2 6 167.6123 3.92 3.44018.301 0 4 4
Merc 280C17.8 6 167.6123 3.92 3.44018.901 0 4 4
Merc 450SE16.4 8 275.8180 3.07 4.07017.400 0 3 3
Merc 450SL17.3 8 275.8180 3.07 3.73017.600 0 3 3
Merc 450SLC15.2 8 275.8180 3.07 3.78018.000 0 3 3
Cadillac Fleetwood10.4 8 472.0205 2.93 5.25017.980 0 3 4
Lincoln Continental10.4 8 460.0215 3.00 5.42417.820 0 3 4
Chrysler Imperial14.7 8 440.0230 3.23 5.34517.420 0 3 4
Fiat 12832.4 4 78.7 66 4.08 2.20019.471 1 4 1
Honda Civic30.4 4 75.7 52 4.93 1.61518.521 1 4 2
Toyota Corolla33.9 4 71.1 65 4.22 1.83519.901 1 4 1
Toyota Corona21.5 4 120.1 97 3.70 2.46520.011 0 3 1
Dodge Challenger15.5 8 318.0150 2.76 3.52016.870 0 3 2
AMC Javelin15.2 8 304.0150 3.15 3.43517.300 0 3 2
Camaro Z2813.3 8 350.0245 3.73 3.84015.410 0 3 4
Pontiac Firebird19.2 8 400.0175 3.08 3.84517.050 0 3 2
Fiat X1-927.3 4 79.0 66 4.08 1.93518.901 1 4 1
Porsche 914-226.0 4 120.3 91 4.43 2.14016.700 1 5 2
Lotus Europa30.4 4 95.1113 3.77 1.51316.901 1 5 2
Ford Pantera L15.8 8 351.0264 4.22 3.17014.500 1 5 4
Ferrari Dino19.7 6 145.0175 3.62 2.77015.500 1 5 6
Maserati Bora15.0 8 301.0335 3.54 3.57014.600 1 5 8
Volvo 142E21.4 4 121.0109 4.11 2.78018.601 1 4 2

It appears in SoS as a pandas DataFrame

In [26]:
Out[26]:
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6.0 160.0 110.0 3.90 2.620 16.46 0.0 1.0 4.0 4.0
Mazda RX4 Wag 21.0 6.0 160.0 110.0 3.90 2.875 17.02 0.0 1.0 4.0 4.0
Datsun 710 22.8 4.0 108.0 93.0 3.85 2.320 18.61 1.0 1.0 4.0 1.0
Hornet 4 Drive 21.4 6.0 258.0 110.0 3.08 3.215 19.44 1.0 0.0 3.0 1.0
Hornet Sportabout 18.7 8.0 360.0 175.0 3.15 3.440 17.02 0.0 0.0 3.0 2.0
Valiant 18.1 6.0 225.0 105.0 2.76 3.460 20.22 1.0 0.0 3.0 1.0
Duster 360 14.3 8.0 360.0 245.0 3.21 3.570 15.84 0.0 0.0 3.0 4.0
Merc 240D 24.4 4.0 146.7 62.0 3.69 3.190 20.00 1.0 0.0 4.0 2.0
Merc 230 22.8 4.0 140.8 95.0 3.92 3.150 22.90 1.0 0.0 4.0 2.0
Merc 280 19.2 6.0 167.6 123.0 3.92 3.440 18.30 1.0 0.0 4.0 4.0
Merc 280C 17.8 6.0 167.6 123.0 3.92 3.440 18.90 1.0 0.0 4.0 4.0
Merc 450SE 16.4 8.0 275.8 180.0 3.07 4.070 17.40 0.0 0.0 3.0 3.0
Merc 450SL 17.3 8.0 275.8 180.0 3.07 3.730 17.60 0.0 0.0 3.0 3.0
Merc 450SLC 15.2 8.0 275.8 180.0 3.07 3.780 18.00 0.0 0.0 3.0 3.0
Cadillac Fleetwood 10.4 8.0 472.0 205.0 2.93 5.250 17.98 0.0 0.0 3.0 4.0
Lincoln Continental 10.4 8.0 460.0 215.0 3.00 5.424 17.82 0.0 0.0 3.0 4.0
Chrysler Imperial 14.7 8.0 440.0 230.0 3.23 5.345 17.42 0.0 0.0 3.0 4.0
Fiat 128 32.4 4.0 78.7 66.0 4.08 2.200 19.47 1.0 1.0 4.0 1.0
Honda Civic 30.4 4.0 75.7 52.0 4.93 1.615 18.52 1.0 1.0 4.0 2.0
Toyota Corolla 33.9 4.0 71.1 65.0 4.22 1.835 19.90 1.0 1.0 4.0 1.0
Toyota Corona 21.5 4.0 120.1 97.0 3.70 2.465 20.01 1.0 0.0 3.0 1.0
Dodge Challenger 15.5 8.0 318.0 150.0 2.76 3.520 16.87 0.0 0.0 3.0 2.0
AMC Javelin 15.2 8.0 304.0 150.0 3.15 3.435 17.30 0.0 0.0 3.0 2.0
Camaro Z28 13.3 8.0 350.0 245.0 3.73 3.840 15.41 0.0 0.0 3.0 4.0
Pontiac Firebird 19.2 8.0 400.0 175.0 3.08 3.845 17.05 0.0 0.0 3.0 2.0
Fiat X1-9 27.3 4.0 79.0 66.0 4.08 1.935 18.90 1.0 1.0 4.0 1.0
Porsche 914-2 26.0 4.0 120.3 91.0 4.43 2.140 16.70 0.0 1.0 5.0 2.0
Lotus Europa 30.4 4.0 95.1 113.0 3.77 1.513 16.90 1.0 1.0 5.0 2.0
Ford Pantera L 15.8 8.0 351.0 264.0 4.22 3.170 14.50 0.0 1.0 5.0 4.0
Ferrari Dino 19.7 6.0 145.0 175.0 3.62 2.770 15.50 0.0 1.0 5.0 6.0
Maserati Bora 15.0 8.0 301.0 335.0 3.54 3.570 14.60 0.0 1.0 5.0 8.0
Volvo 142E 21.4 4.0 121.0 109.0 4.11 2.780 18.60 1.0 1.0 4.0 2.0

we can get the data from the JS script kernel as follows:

In [27]:
Out[27]:
{ mpg: 21,
  cyl: 6,
  disp: 160,
  hp: 110,
  drat: 3.9,
  wt: 2.62,
  qsec: 16.46,
  vs: 0,
  am: 1,
  gear: 4,
  carb: 4 }

TypeScript

SoS exchange data with a JypeScript kernel using JSON format. It passes all JSON serializable datatypes using the json module, and convert numpy arrays to list before translation (array.tolist()), and use DataFrame.to_jason to translate Pandas DataFrame to a list of records in JS.

Python condition TypeScript
None null
boolean, int, str, etc corresponding JS type
numpy.ndarray array
numpy.matrix nested array
pandas.DataFrame table with scheme and array of records (dictionary)

Translation from TypeScript to Python is easier because Python supports all JSON serializable TS datatypes.

The DataFrame translation is particularly interesting because it allows you to pass complex datatypes in Python and R for visualization. For example, for the following data.frame in R,

In [1]:
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX421.0 6 160.0110 3.90 2.62016.460 1 4 4
Mazda RX4 Wag21.0 6 160.0110 3.90 2.87517.020 1 4 4
Datsun 71022.8 4 108.0 93 3.85 2.32018.611 1 4 1
Hornet 4 Drive21.4 6 258.0110 3.08 3.21519.441 0 3 1
Hornet Sportabout18.7 8 360.0175 3.15 3.44017.020 0 3 2
Valiant18.1 6 225.0105 2.76 3.46020.221 0 3 1
Duster 36014.3 8 360.0245 3.21 3.57015.840 0 3 4
Merc 240D24.4 4 146.7 62 3.69 3.19020.001 0 4 2
Merc 23022.8 4 140.8 95 3.92 3.15022.901 0 4 2
Merc 28019.2 6 167.6123 3.92 3.44018.301 0 4 4
Merc 280C17.8 6 167.6123 3.92 3.44018.901 0 4 4
Merc 450SE16.4 8 275.8180 3.07 4.07017.400 0 3 3
Merc 450SL17.3 8 275.8180 3.07 3.73017.600 0 3 3
Merc 450SLC15.2 8 275.8180 3.07 3.78018.000 0 3 3
Cadillac Fleetwood10.4 8 472.0205 2.93 5.25017.980 0 3 4
Lincoln Continental10.4 8 460.0215 3.00 5.42417.820 0 3 4
Chrysler Imperial14.7 8 440.0230 3.23 5.34517.420 0 3 4
Fiat 12832.4 4 78.7 66 4.08 2.20019.471 1 4 1
Honda Civic30.4 4 75.7 52 4.93 1.61518.521 1 4 2
Toyota Corolla33.9 4 71.1 65 4.22 1.83519.901 1 4 1
Toyota Corona21.5 4 120.1 97 3.70 2.46520.011 0 3 1
Dodge Challenger15.5 8 318.0150 2.76 3.52016.870 0 3 2
AMC Javelin15.2 8 304.0150 3.15 3.43517.300 0 3 2
Camaro Z2813.3 8 350.0245 3.73 3.84015.410 0 3 4
Pontiac Firebird19.2 8 400.0175 3.08 3.84517.050 0 3 2
Fiat X1-927.3 4 79.0 66 4.08 1.93518.901 1 4 1
Porsche 914-226.0 4 120.3 91 4.43 2.14016.700 1 5 2
Lotus Europa30.4 4 95.1113 3.77 1.51316.901 1 5 2
Ford Pantera L15.8 8 351.0264 4.22 3.17014.500 1 5 4
Ferrari Dino19.7 6 145.0175 3.62 2.77015.500 1 5 6
Maserati Bora15.0 8 301.0335 3.54 3.57014.600 1 5 8
Volvo 142E21.4 4 121.0109 4.11 2.78018.601 1 4 2

we can get the data from the TS script kernel as follows:

In [3]:
Out[3]:
{ mpg: 21,
  cyl: 6,
  disp: 160,
  hp: 110,
  drat: 3.9,
  wt: 2.62,
  qsec: 16.46,
  vs: 0,
  am: 1,
  gear: 4,
  carb: 4 }